

Analyzing the Performance of the Inter-Blockchain Communication Protocol

Monash University¹, Universidade Federal do Pampa², CSIRO's Data61³

João Otávio Chervinski^{1,3}, Diego Kreutz², Xiwei Xu³, Jiangshan Yu¹

BLOCKCHAIN PROJECT ECOSYSTEM

Cross-chain communication

- Communication between different blockchains enables:
 - Cross-chain payments
 - Cross-chain contracts
 - External data queries and price feeds
 - Off-chain computation

How to achieve cross-chain communication?

The Cosmos Network

Why Cosmos IBC?

\$30.3 Billion (2022)

Why Cosmos IBC?

\$30.3 Billion (2022)

blockchains

But there's still a lack of studies on IBC and cross-chain protocols

Our work and contributions

- Proposed a **novel framework** to guide the evaluation of cross-chain protocol performance
- Conducted a **comprehensive analysis** of the performance of IBC:
 - Using two relayers **reduces cross-chain throughput by 33%**
 - Identified bottlenecks that can **hinder the performance by 70%**
 - Identified strategies to reduce cross-chain transfer latency
- Identified challenges associated to deploying the IBC protocol
- Provided a **158GB dataset** and **analysis tool** to aid future research

A brief introduction to IBC

The Inter-Blockchain Communication Protocol (IBC)

IBC handles authentication, transport and ordering of opaque data packets

The Inter-Blockchain Communication Protocol (IBC)

IBC messages are sent through IBC Channels

The Inter-Blockchain Communication Protocol (IBC)

The relayer monitors chains and delivers IBC packets

Cross-chain performance evaluation framework

Cross-chain performance evaluation framework

Cross-chain performance evaluation framework

Cross-chain performance evaluation framework

IBC protocol performance analysis

Experimental settings

- Setup:
 - Two Cosmos Gaia blockchains (Tendermint consensus, 5 validators each)
 - 5 seconds block interval (similar to Cosmos Hub, Osmosis)
 - Hermes Relayer v1.0 (Rust-based IBC Relayer)
 - 200ms simulated round-trip simulated latency
- Workload:
 - Fungible token transfers (*transfer*, *receive*, *acknowledge*)
 - 1 blockchain transaction contains 100 IBC messages

Total experiment time: 460 hours

Tendermint blockchain throughput

Tendermint blockchain throughput

Tendermint blockchain throughput

<u>One packet relayer</u>

- Executions span **50** consecutive blocks
- 20 executions for each data point
- Max. throughput: 80 transfers/s with 200ms latency
- Tendermint can process 961 messages/s

<u>One packet relayer</u>

- Executions span **50** consecutive blocks
- 20 executions for each data point
- Max. throughput: 80 transfers/s with 200ms latency
- Tendermint can process 961 messages/s

Can throughput be increased with more relayers or channels?

<u>One packet relayer</u>

- Executions span **50** consecutive blocks
- 20 executions for each data point
- Max. throughput: 80 transfers/s with 200ms latency
- Tendermint can process 961 messages/s

100

90

80

70 60

One packet relayer

- Executions span **50** consecutive blocks
- 20 executions for each data point
- Max. throughput: 80 transfers/s with 200ms latency
- Tendermint can process 961 • messages/s

Throughput (transfers/sec) 50 40 30 20 10 0 20 200 220 240 260 280 300 60 80 0 160 180 Input rate (transfers/sec)

0ms

Can throughput be increased with more relayers or channels?

Two relayers reduce performance by 33% due to redundant packet delivery

200ms

Cross-chain operations breakdown (5,000 transfers)

Cross-chain operations breakdown (5,000 transfers)

Cross-chain operations breakdown (5,000 transfers)

Reducing completion latency (5,000 transfers)

Can we reduce completion latency?

Divide into more blocks:

1 block: 455 sec ↓ 2 blocks: 286 sec ↓ 4 blocks: 219 sec ↓ 8 blocks: 143 sec ↓ 16 blocks: 138 sec ↑ 32 blocks: 240 sec ↑ 64 blocks: 441 sec

70% reduction from 1 block (455s) to 16 blocks (138s)

What can we learn from the results

• Blockchains are evolving fast, but this should not lead to a compromise on quality when designing systems

- Need to leverage existing research and knowledge
 - Not every problem needs a completely new solution
 - Leverage existing solutions (parallel queries, scalability)

• Testing is software is crucial to find ways to improve

That's all!

I'm looking for jobs!

SCAN ME

https://qrco.de/be5EvF