

Requirements for a hybrid TPM based on optimized ML-DSA post-quantum signature

Felipe José Aguiar Rampazzo Rodrigo de Meneses Caio Teixeira Marco A. Amaral Henriques

Trusted Platform Module (TPM)

- Dedicated secure hardware used to attest system integrity and secure key storage
- Provides:
 - A set of cryptographic and security functions
 - \circ Tamper-proof
- Can be used as a Root of Trust

Root of Trust

Cryptographic algorithms available in TPM

- Elliptic curves
- RSA
- AES
- SHA family: SHA-1, SHA-2 and SHA-3
- Others.

Cryptographic algorithms available in TPM

- SHA family: SHA-1, SHA-2 and SHA-3
- Others.

 Cryptographically Relevant Quantum Computers (CRQC) will break Public Key algorithms (RSA and ECC).

Fonte: https://www.science.org/content/article/quantum-computers-take-key-step-toward-curbing-errors

- Cryptographically Relevant Quantum Computers (CRQC) will break Public Key algorithms (RSA and ECC).
- Schemes resistant to CRQC attacks are needed to keep the root of trust secure.

Fonte: https://www.science.org/content/article/quantum-computers-take-key-step-toward-curbing-errors

- Cryptographically Relevant Quantum Computers (CRQC) will break Public Key algorithms (RSA and ECC).
- Schemes resistant to CRQC attacks are needed to keep the root of trust secure.
- A CQCR could emerge in ~10 years.

Fonte: https://www.science.org/content/article/quantum-computers-take-key-step-toward-curbing-errors

- Cryptographically Relevant Quantum Computers (CRQC) will break Public Key algorithms (RSA and ECC).
- Schemes resistant to CRQC attacks are needed to keep the root of trust secure.
- A CQCR could emerge in ~10 years.
 - Important to protect data now.

Fonte: https://www.science.org/content/article/guantum-computers-take-key-step-toward-curbing-errors

What is a Hybrid scheme?

A hybrid cryptographic scheme is formed by a traditional and a post-quantum algorithm.

Why is a Hybrid necessary?

Hybrids are safe now...

No presence of a Cryptographically Relevant Quantum Computers (CRQC)

... and recommended

- Classical computers might break PQC:
 - "Breaking Rainbow Takes a Weekend on a Laptop" (Beullens, 2022).
- Avoid the "save now, decrypt later" attack.

Objectives

- Measuring the impacts of **Hybrid** protocols on TPM;
- Apply strategies to reduce memory usage of PQC algorithms.

Context

- Hybrid scheme:
 - ML-DSA + ECC (based on Ed25519)
- Adoption of memory optimization in ML-DSA;
- **TPM Software Stack (TSS):** interface to pass commands to the TPM;
- **SW-TPM:** emulator of TPM specifications in software:
 - Used for prototyping.

Memory optimization

Instead of storing in memory

a 4x4 matrix A (ML-DSA-44),

with 256 4-byte polynomials (totaling 16KiB)...

Memory optimization

... we generate each polynomial of A, multiply by the y and accumulate results in w, constructing it after all entries are processed.

Processing time

Processing time in milliseconds

Processing time

Processing time in milliseconds

Processing time

Processing time in milliseconds

Conclusions

- ML-DSA optimization makes it easier to implement in TPM;
- Hybrid versions showed no significant memory peak increase compared to the PQC version;
- Hybrid versions resulted in longer processing time.

Future Work

- Further reduce the memory and processing requirements of Hybrid and PQC protocols;
- Implement a PQC and Hybrid version of ML-KEM;
- Explore new hybrid combinations.

Obrigado!

Felipe J. A. Rampazzof233261@dac.unicamp.br

Slides Extras

What is a Hybrid scheme?

Key Encapsulation Mechanism (KEM)

Emulated TPM

TRUST ELEMENT	SECURITY LEVEL	SECURITY FEATURES	TYPICAL APPLICATION
DISCRETE TPM	HIGHEST	TAMPER RESISTANT HARDWARE	CRITICAL SYSTEMS
INTEGRATED TPM	HIGHER	HARDWARE	GATEWAYS
FIRMWARE TPM	HIGH	TEE	ENTERTAINMENT SYSTEMS
SOFTWARE TPM	NA	NA	TESTING & PROTOTYPING
VIRTUAL TPM	HIGH	HYPERVISOR	CLOUD ENVIRONMENT

Tool stack

- **TPM Software Stack (TSS):** interface to pass commands to the TPM;
- **sw-tpm:** emulator of TPM specifications in software:
 - Used for prototyping.

