
Trust, but Verify: Evaluating Developer Behavior in Mitigating
Security Vulnerabilities in Open-Source Software Projects

Janislley Oliveira de Sousa , Bruno Carvalho de Farias, Eddie Batista de
Lima Filho, Lucas Carvalho Cordeiro

Email: janislley.sousa@sidia.com

XXIV Brazilian Symposium on Information
and Computational Systems Security

São José dos Campos/SP - 2024

Research Team:

MSc. Janislley Oliveira Ph.D. Bruno Farias Dr. Eddie Batista Dr. Lucas Cordeiro
 (UFAM/SIDIA) (Manchester) (UFAM/TPV) (UFAM/Manchester)

XXIV Brazilian Symposium on Information
and Computational Systems Security

São José dos Campos/SP - 2024

1. Motivation and Research Problem: Investigating the effectiveness of vulnerability detection in critical
open-source software projects to address security risks.

2. Background and Methodology: Utilizing bounded model checking and the LSVerifier tool to
systematically identify and assess vulnerabilities in real-world OSS projects.

3. Empirical Study Results and Key Findings: Highlighting common vulnerabilities and providing
actionable strategies to improve security practices and mitigate risks in OSS development.

Outline

3Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● More than 50% of a software project’s costs today are allocated not to the
creative process of software development, but to the corrective tasks of
debugging and fixing errors [1].

[1] KRASNER, Herb.The cost of poor software quality in the US: A 2024 Report.

1 - Introduction

4

Figure 1: Poor software quality costs.

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● Modern software development often employs
extensive third-party code from external
libraries to save time, which usually comes
from open-source software projects.

● While developers usually review their code for
bugs and security issues using specialized
tools, they often skip checking or not check
third-party libraries due to the extra effort
involved in their evaluation or bad practices
during development process.

● Since a software project may depend on
several open-source libraries, analysis of a
software project’s entire dependency tree can
become very complex.

1.1 - Motivation

5Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

Source: https://xkcd.com/2347/

Research problem
Challenges and motivations.

● The C programming language lacks
protection mechanisms such as bound
checking and memory safety.

● Developers are responsible for memory and
resource management.

● Software developers frequently use
open-source libraries to speed up
development cycles.

● These libraries can contain security
vulnerabilities, leading to high-profile
incidents (Java's Log4Shell, Windows
CrowdStrike).

● Developers' behaviors and practices
significantly influence the mitigation of security
vulnerabilities in third-party libraries within
OSS projects.

66

Research Questions

7

What will be done?

This study aims to answer the following
research questions:

● RQ1: What are the Common Types and
Prevalence of Dependency Vulnerabilities
in Open-Source Software Projects?

● RQ2: How do developers’ behaviors and
practices influence the mitigation of
security vulnerabilities?

● RQ3: What is the most effective strategy
for mitigating risks from dependency
vulnerabilities in open-source software
projects?

Background
Key concepts and technologies

8

● Bounded Model Checking (BMC)

● LSVerifier Tool

● ESBMC module

● Basic Idea: given a transition system M, check negation of a given property φ up to given depth k.

● Bounded model checkers “slice” the state space in depth.
● It is aimed to find bugs and can only prove correctness if all states are reachable within the bound.
● Exhaustively explores all executions.
● Can be bounded to limit number of iterations and context-switch.
● Report errors as traces.

2.1 - Bounded Model Checking (BMC)

9Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● The Tool takes a source-code directory, a software project, and dependencies configuration as
inputs.

● The verification outcomes are compiled into a report (logs, CSV files).

● Tool repository: https://github.com/janislley/LSVerifier - Apache 2.0 Licence.

10

2.2 - Large Systems Verifier (LSVerifier) Architecture

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

SBSeg’23 Paper:

2.2 - ESBMC module

11Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

Figure 2: ESBMC module used to process the source-code.

2.2 - ESBMC module - SV-COMP 2024

12Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● LSVerifier tool has support to exploit the following properties violations:

○ Out-of-bounds array access;
○ Illegal pointer dereferences (null dereferencing, out-of-bounds dereferencing, double free, and

misaligned memory access);
○ Arithmetic overflow;
○ Buffer overflow;
○ Not a number (NaN) occurrences in floating-point;
○ Division by zero;
○ Memory leak;
○ Dynamic memory allocation;
○ Data races;
○ Deadlock;
○ Atomicity violations at visible assignments.

2.2 - LSVerifier: Property Verification Support

13

STTT Paper:

Verification
Methodology

Inputs and definitions for the proposed
approach validation.

14

Main topics:

● Vulnerability Detection Process

● Experiment Setup

The data collected from this verification methodology
is used to address the research questions (RQs).

1. Perform Formal Verification Analysis:
○ Analyze the system and ensure compliance with security properties.

2. Analyze Property Violations:
○ Identify and categorize violations based on their nature and severity.

3. Identify Potential Vulnerabilities:
○ Assess whether identified violations are actual security threats.

4. Open a Issue in the OSS Project:
○ Issue Reporting with a valid property violation that can cause a potential vulnerability.

5. Discuss the solution with Developers and Maintainers:
○ Explore fixes and solutions for the vulnerability.

3.1 - Vulnerability Detection Process

15Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● LSVerifier was used on the entire set of OSS projects:

$ lsverifier -r -f -l dep.txt

Where,

-r enables recursive verification, ensuring that the verification process includes all nested functions and
dependencies.
-f enables function verification, verifying individual functions within a codebase.
-l dep.txt specifies a file containing paths for including header files from dependencies.

● OSS projects verified:

○ VideoLAN Client (VLC) in version 3.0.18;
○ VI improved (VIM) in version 9.0.1672;
○ Terminal multiplexer (Tmux) in version 3.3a;
○ Reliable USB Formatting Utility System (RUFUS) in version 4.1;
○ OpenBSD secure shell (OpenSSH) in version 9.3;
○ Cross-platform Make (CMake) in version 3.27.0-rc4;
○ Network Data (Netdata) in version 1.40.1;
○ Open Secure Sockets Layer (OpenSSL) in version 3.1.1;
○ Structured Query Language lightweight (SQLite) in version 3.42.0;
○ Remote dictionary server (Redis) in version 7.0.11;

3.2 - Experiment Setup

16Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

Empirical Study
Results

Data collected and analyzed.

17

● Analysis of vulnerabilities in OSS project
dependencies.

● The impact on OSS project security.

● Analysis of developers’ behaviors and
practices that influence vulnerability
mitigation.

● With verification logs report (counterexample traces) provided by LSVerifier, we reported the issues
found to the respective OSS projects according to verification methodology.

4.1 - OSS Projects Exploitation

18Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

19

● Cmake Vulnerability: dereference failure caused by invalid pointer (const char* first).

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

20

● Array Out of Bounds violated: array `types' upper bound fix for tyne-regex third-party library.

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

21

● Dereference failure (invalid pointer and Null pointer) issues were
found in the NPL third-party library used by Wireshark.

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● [Finding 01] This study identified common dependency vulnerabilities in open-source software
projects, including:

○ Pointer dereference issues like double-free errors (CWE-415) in VLC.
○ Array access violations such as out-of-bounds errors (CWE-787) in RUFUS.
○ Invalid pointers were detected in CMake and Wireshark (CWE-824),
○ Null pointer dereferences in Wireshark (CWE-476).

● These findings demonstrate:
○ Vulnerabilities are not isolated incidents but recurring issues in dependency management.
○ Need for more systematic and proactive mitigation strategies to ensure OSS project

security.

● [Finding 02] Developers' actions, such as removing deprecated subsystems and adding
verification steps, demonstrate the critical role of proactive maintenance in mitigating
security vulnerabilities.

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

22Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● The SQLite project highlights a common issue in software development: the tendency to dismiss
static analyzer results.

● [Finding 3] Although static analyzers may generate false positives, they often identify legitimate
issues that may be missed during manual code reviews. Also, formal verifiers, supported by
mathematical proofs, ensure higher accuracy.

4.2 - Results - RQ2: How do developers' behaviors and practices influence the
mitigation of security vulnerabilities?

23Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● In the case of OpenSSL, an invalid pointer dereference was reported, but developers did not
classify it as a vulnerability or error.

● This perspective reveals a problematic practice: developers frequently assume that certain
conditions will never occur, dismissing potential vulnerabilities.

● [Finding 4] Dismissing potential issues identified by static analysis or formal verification tools,
without thorough investigation, exposes software to significant security risks.

4.2 - Results - RQ2: How do developers' behaviors and practices influence the
mitigation of security vulnerabilities?

24Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● [Finding 5] Thorough verification of false positives is crucial, as dismissing them without proper
investigation can result in overlooked vulnerabilities that compromise software security.
Rigorous validation of potential false positives is essential to prevent unintended security
weaknesses from entering the codebase.

● [Finding 6] Our analysis indicates that functions from dependency libraries, especially in C
programs, where pointers are frequently used to access arrays, pose serious security risks if not
carefully verified.

● [Finding 7] Our results demonstrate that effective library management plays a more crucial role
in mitigating dependency vulnerabilities in OSS projects.

4.2 - Results - RQ3: What is the most effective strategy for mitigating risks from
dependency vulnerabilities in open-source software projects?

25Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● Developers can significantly lower security risks by reducing unnecessary dependencies,
selecting well-vetted libraries, and continuously monitoring and managing dependencies.

● By addressing our three research questions, we have identified key best practices that developers
and the OSS community can adopt to strengthen security measures significantly, as follows:

○ Providing comprehensive dependency management;

○ Integrating formal verification tools and static analysis;

○ Fostering a security-first culture;

○ Using well-established libraries;

○ Enforcing regular security audits and reviews.

● In summary, fostering a security-conscious mindset and embedding best practices into the
development process is essential for ensuring the security and longevity of OSS projects.

5 - Conclusion

26Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

● [Tang et al. 2022] Tang, W., Xu, Z., Liu, C., Wu, J., Yang, S., Li, Y., Luo, P., and Liu, Y.(2022).
Towards understanding third-party library dependency in c/c++ ecosystem. In 37th IEEE/ACM
ASE, pages 1–12.

● [de Sousa et al. 2023] de Sousa, J. O., de Farias, B. C., da Silva, T. A., de Lima Filho, E. B.,
and Cordeiro, L. C. (2023b). Lsverifier: A bmc approach to identify security vulnerabilities in c
open-source software projects. In XXIII SBSeg, pages 17–24. SBC.

● [de Sousa et al. 2024] de Sousa, J. O., de Farias, B. C., da Silva, T. A., Cordeiro, L. C., et al.
(2024). Finding software vulnerabilities in open-source c projects via bounded model
checking. STTT. arXiv preprint arXiv:2311.05281.

● [Gadelha et al. 2021] Gadelha, M. R., Menezes, R. S., and Cordeiro, L. C. (2021). Esbmc 6.1:
automated test case generation using bounded model checking. STTT, 23(6): 857–861.

● [Menezes et al. 2024] Menezes, R. S., Aldughaim, M., Farias, B., Li, X., Manino, E., Shmarov,
F., Song, K., Brauße, F., Gadelha, M. R., Tihanyi, N., et al. (2024). Es-bmc v7. 4: Harnessing
the power of intervals: (competition contribution). In TACAS, pages 376–380. Springer.

References

27Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software ProjectsMSc. Janislley Oliveira

Trust, but Verify: Evaluating Developer Behavior in Mitigating
Security Vulnerabilities in Open-Source Software Projects

Obrigado! Thank You!
Email: janislley.sousa@sidia.com

XXIV Brazilian Symposium on Information
and Computational Systems Security

São José dos Campos/SP - 2024

