i XXIV Brazilian Symposium on Information
- : /‘?“‘\\ and Computational Systems Security

Séao José dos Campos/SP - 2024
SBSeg 4

Trust, but Verify: Evaluating Developer Behavior in Mitigating
Security Vulnerabilities in Open-Source Software Projects

Janislley Oliveira de Sousa , Bruno Carvalho de Farias, Eddie Batista de

Lima Filho, Lucas Carvalho Cordeiro

Email: janislley.sousa@sidia.com

o @
MANCHESTER S'ld'la SAMSUNG

//impact innovation

XXIV Brazilian Symposium on Information
and Computational Systems Security
Séao José dos Campos/SP - 2024

Research Team:

b
S
ﬁ‘ A4
Ay ?/"
MSc. Janislley Oliveira Ph.D. Bruno Farias Dr. Eddie Batista Dr. Lucas Cordeiro
(UFAM/SIDIA) (Manchester) (UFAM/TPV) (UFAM/Manchester)

MANCHESIER Sidiq SAMSUNG

//impact innovation

4 ESBMC

The University of Manchester

Outline

Motivation and Research Problem: Investigating the effectiveness of vulnerability detection in critical
open-source software projects to address security risks.

Background and Methodology: Utilizing bounded model checking and the LSVerifier tool to
systematically identify and assess vulnerabilities in real-world OSS projects.

Empirical Study Results and Key Findings: Highlighting common vulnerabilities and providing
actionable strategies to improve security practices and mitigate risks in OSS development.

® o
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects § 1 d 1 G SBSG%QA 3
impact innovation C

1 - Introduction

e More than 50% of a software project’s costs today are allocated not to the
creative process of software development, but to the corrective tasks of

debugging and fixing errors [1].

5SS 55
1 D022 0230240056 528 027 D)8)9

Find, Understand, Determine Develop Try to fix Prove the Repeat Record the Deploy the
record replicate root cause and fix and break fix works steps 2-6 fix details fix as

an_d . and create as needed needed
prioritize test case until done

Figure 1: Poor software quality costs.

[1] KRASNER, Herb.The cost of poor software quality in the US: A 2024 Report.
sidia SBso

MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects

4

1.1 - Motivation

ALL MODERN DIGITAL
INF! RASTUCTURE

e Modern software development often employs h

-
extensive third-party code from external
libraries to save time, which usually comes i{Il§
from open-source software projects.
e While developers usually review their code for
L

bugs and security issues using specialized
tools, they often skip checking or not check A PROJECT SOME
. . . RANDOM PERSON
!hlrd-part_y libraries due to the extra effort IN NEBRASKA HAS
involved in their evaluation or bad practices BB
; MAINTAININ

during development process. SNCE 2003

e Since a software project may depend on F«J
several open-source libraries, analysis of a l 7‘1
software project’s entire dependency tree can
become Very complex. Source: https://xkcd.com/2347/

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects ? 1 d 1 O SB 86%24 5
impact innovation C

The C programming language lacks
protection mechanisms such as bound
checking and memory safety.

Developers are responsible for memory and
resource management.

Software developers frequently use
open-source libraries to speed up

Research problem

These libraries can contain security
. . vulnerabilities, leading to high-profile
Challenges and motivations. incidents (Java's Log4Shell, Windows
CrowdStrike).

Developers' behaviors and practices
significantly influence the mitigation of security
vulnerabilities in third-party libraries within
OSS proiects.

sidia SBSco4 | 6

This study aims to answer the following
research questions:

RQ1: What are the Common Types and
Prevalence of Dependency Vulnerabilities
in Open-Source Software Projects?

R esea rc h Q u eSt i 0 n S RQ2: How do developers’ behaviors and

practices influence the mitigation of
What will be done? security vulnerabilities?

RQ3: What is the most effective strategy
for mitigating risks from dependency
vulnerabilities in open-source software
projects?

e Bounded Model Checking (BMC)

Background

e LSVerifier Tool
Key concepts and technologies e ESBMC module

sidia SBscg | s

2.1 - Bounded Model Checking (BMC)

Basic Idea: given a transition system M, check negation of a given property ¢ up to given depth k.

BMCys (k) = I(s1) A (/\ T (si, Si—}-l)) A (\/ WP(£:‘))

" e Transition
iy 9 System

Property
Vv Pk 4
(IR — ‘
M, ~— Bound

/)
Po v 01 v 02 v TPk

\\ O > O > o © —
MO M1 M2 Mk-1

N Counterexample trace -

Bounded model checkers “slice” the state space in depth.
It is aimed to find bugs and can only prove correctness if all states are reachable within the bound.
Exhaustively explores all executions.
Can be bounded to limit number of iterations and context-switch.
Report errors as traces.

MSc. Janislley Oliveira

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects

sidia SBSco

9

2.2 - Large Systems Verifier (LSVerifier) Architecture

_
=
L

Source Code

LSVerifier
configuration

File Listing Function Listing Model Checker
A A
f—/% r N\ r N\
= void f({ O
ERE b
ESBMC
List .c files List
functions l Export Results
——
‘ gy | 5
—>
\—> void f(){
} Register
ESBMC log
Check each
function
LSVerifier

~ |8

Spreadsheet
with outcome

SBSeg’23 Paper:

;o]

Il

[=]

[=]

e The Tool takes a source-code directory, a software project, and dependencies configuration as

inputs.

e The verification outcomes are compiled into a report (logs, CSV files).

e Tool repository: https://github.com/janislley/LSVerifier - Apache 2.0 Licence.

MSc. Janislley Oliveira

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects

sidia SBSco

10

2.2 - ESBMC module

C Program

Scan

MSec. Janislley Oliveira

v

clang

AST

Control-flow
Graph
Generator

Figure 2: ESBMC module used to process the source-code.

SMT
formula

Correctness
Proof

External Memory
Libraries Model
; -
coto | | Symbolic
Program || EXecution
|__Engine

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects

Property holds

Property is violated

Violation
Witness

|||||||||||||

11

2.2 - ESBMC module - SV-COMP 2024

CBMC 2LS

1000 -

s

Bubaak
Bubaak-SpLit
cBMC
CVT-ParPort
CPAchecker
DIVINE

-10000 -5000 0 5000 10000 15000 20000 25000

Cumulative score

[[
MSec. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects S 1 d 1 G SBS€g24 12

//impact innovation

2.2 - LSVerifier: Property Verification Support

LSVerifier tool has support to exploit the following properties violations:

O O 0O O 0O O 0O O O

Out-of-bounds array access;
lllegal pointer dereferences (null dereferencing, out-of-bounds dereferencing, double free, and
misaligned memory access);

Arithmetic overflow;

Buffer overflow;

N.ot.a! number (NaN) occurrences in floating-point; STTT Paper:
Division by zero;

Memory leak; E E
Dynamic memory allocation; .
Data races; r
Deadlock;

Atomicity violations at visible assignments.

[=]

sidia SBSco

13

Veriﬁcation Main topics:

e Vulnerability Detection Process

MEthOdOIOgy e Experiment Setup

The data collected from this verification methodology
is used to address the research questions (RQs).

Inputs and definitions for the proposed
approach validation.

sidia sBsco | 1

3.1 - Vulnerability Detection Process

Perform Formal Verification Analysis:
o Analyze the system and ensure compliance with security properties.
Analyze Property Violations:
o ldentify and categorize violations based on their nature and severity.
Identify Potential Vulnerabilities:
o Assess whether identified violations are actual security threats.
Open a Issue in the OSS Project:
o Issue Reporting with a valid property violation that can cause a potential vulnerability.
Discuss the solution with Developers and Maintainers:
o Explore fixes and solutions for the vulnerability.

Discuss the Solution
Perform Formal Analyze Property Identify Potential Open an Issue in with Developers and
Verification Analysis Violations Vulnerabilities the OSS Project Maintainers

e-B-B--2

Figure 3. Verification methodology using LSVerifier.

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects ? 1 d 1 O SB 86%24 15
impact innovation C

3.2 - Experiment Setup

e LSVerifier was used on the entire set of OSS projects:
$ Isverifier -r -f -1 dep.txt
Where,

-r enables recursive verification, ensuring that the verification process includes all nested functions and
dependencies.

-f enables function verification, verifying individual functions within a codebase.

-I dep.txt specifies a file containing paths for including header files from dependencies.

e OSS projects verified:

VideoLAN Client (VLC) in version 3.0.18;

VI improved (VIM) in version 9.0.1672;

Terminal multiplexer (Tmux) in version 3.3a;

Reliable USB Formatting Utility System (RUFUS) in version 4.1;
OpenBSD secure shell (OpenSSH) in version 9.3;

Cross-platform Make (CMake) in version 3.27.0-rc4;

Network Data (Netdata) in version 1.40.1;

Open Secure Sockets Layer (OpenSSL) in version 3.1.1;
Structured Query Language lightweight (SQLite) in version 3.42.0;
Remote dictionary server (Redis) in version 7.0.11;

OO O0OO0OO0OO0OO0OO0OO0Oo

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects S 1 d 1 d SB 86%24 16

//impact innoy

Empirical Study
Results

Data collected and analyzed.

Analysis of vulnerabilities in OSS project
dependencies.

The impact on OSS project security.
Analysis of developers’ behaviors and

practices that influence vulnerability
mitigation.

sidia sBsco | v

4.1 - OSS Projects Exploitation

MSec. Janislley Oliveira

Table 1. Issues reported to the open-source software project repositories.

OSS project | Issues reported | Issues fixed
VLC Issue 1¢ 1
VIM Issue 17 0
RUFUS Issue 1¢, Issue 2¢ 1
OpenSSH Issue 1¢, Issue 2/ 0
CMake Issue 1¢ |
Netdata Issue 1", Issue 2' 0
Wireshark Issue I/ 1
OpenSSL Issue 1* 0
SQLite Issue 1/, Issue 2 0
Redis Issue 17, Issue 2° 0

Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects

With verification logs report (counterexample traces) provided by LSVerifier, we reported the issues
found to the respective OSS projects according to verification methodology.

sidia SBSco

18

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

e Cmake Vulnerability: dereference failure caused by invalid pointer (const char* first).

v Source/cm_utf8.c [3}

v Details 1 : Tee et e £8_mi =
5 ’ It) @@ -42,6 +42,11 @@ static unsigned int const cm_utf8_min[7] = {
state 1 flle cm_Utf&C llne 46 funCtlon cm_Uth_deCOde_CharaCter thread o 42 42 const charx cm_utf8_decode_character(const charx first, const charx last,
43 43 unsigned intx pc)
first = invalid-object + 1 = Z; : TS e S
46 |+ if (first == last) { 7
State 2 file cm_utf8.c line 46 function cm_utf8_decode_character thread O & a7 |+ return 0;
48 | + }
49
Violated property: file cm_utf8.c line 46 function cm_utf8_decode_character dereference failure: invalid pointer 45 50 e-Count-leading ones in the First bute:
46 51 unsigned char ¢ = (unsigned char)xfirst++;
47 52 unsigned char const ones = cm_utf8_ones[c];
3
e Brad King @brad.king - 2 years ago Swhee

Thanks!
16885 (merged) should address the Source/cm_utf8.c problem. Fortunately all our call sites ensure a non-empty range already.

All the Utilities/{cmbzip2,cmzstd}/ files are third-party code with their own upstreams.

* Brad King mentioned in commit 8bd6609a 2 years ago

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects S 1 d 1 d SB 56824 19

//impact innovation

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

e Array Out of Bounds violated: array "types' upper bound fix for tyne-regex third-party library.

ex_t* pattern) void re_print(regex_t* pattern)

t char* types[] = { "UNUSED", "DOT", "BEGIN", "END", t char* types[] = { "UNUSED", "DOT", "BEGIN", "END"
QUESTIONMARK", "STAR", "PLUS", "CHAR", "CHAR_CLASS", "QUESTIONMARK", "STAR", "PLUS", "CHAR", "CHAR_CLASS"

INV_CHAR_CLASS", "DIGIT", "NOT_DIGIT", "ALPHA", "NOT_ALPHA", "INV_CHAR_CLASS", "DIGIT", "NOT_DIGIT", "ALPHA", "NOT_ALPHA"
"WHITESPACE", "NOT_WHITESPACE", "BRANCH" }; "WHITESPACE", "NOT_WHITESPACE" /* M),

rurban

Fix GH and fix INV_CHAR_CLASS and GH out-of-bounds
Also use the enum type internally

atchdigit(char c)
E? Reinhard Urban adde :
isdigit((unsigned char)c);

a(char c)

a((unsigned char)c);

® o
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects S 1 d 1 a

//impact innovation

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

e Dereference failure (invalid pointer and Null pointer) issues were
found in the NPL third-party library used by Wireshark.

Q Search (e.g. *vue) (Ctrl+P) ’

7 tools/npl
h ast.h
¢ npl.c
[5 parser.l

h xmem.h

MSec. Janislley Oliveira

Tools: Remove NPL. 6e48F973 | [B
Gerald Combs authored 1 year ago
+0-419 @ Remove tools/npl. It doesn't appear to be used and hasn't had any
activity for many years. Ping #17897.
+0-1993 (@
+0-1429 @
+0-26 @ v tools/npl/ast.h deleted [3} 100644 - 0 +0 -419

® [J
Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects ? 1 d 1 d SB86824 21
impact innovation

4.2 - Results - RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

e [Finding 01] This study identified common dependency vulnerabilities in open-source software
projects, including:
o Pointer dereference issues like double-free errors (CWE-415) in VLC.
o Array access violations such as out-of-bounds errors (CWE-787) in RUFUS.
o Invalid pointers were detected in CMake and Wireshark (CWE-824),
o Null pointer dereferences in Wireshark (CWE-476).

e These findings demonstrate:
o Vulnerabilities are not isolated incidents but recurring issues in dependency management.
o Need for more systematic and proactive mitigation strategies to ensure OSS project
security.

e [Finding 02] Developers' actions, such as removing deprecated subsystems and adding

verification steps, demonstrate the critical role of proactive maintenance in mitigating
security vulnerabilities.

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects § 1 d 1 d SBS€824 22
impact innovation

4.2 - Results - RQ2: How do developers' behaviors and practices influence the
mitigation of security vulnerabilities?

e The SQLite project highlights a common issue in software development: the tendency to dismiss
static analyzer results.

(2) By Richard Hipp (drh) on 2023-10-29 01:14:07 in reply to 1 [link] [source]

All of the problems you report are almost certainly false-positives generated by a static analyzer. Static analyzers are notorious about spewing forth a fountain of false-positives.

If you have an SQL script or a bit of code that will generate a problem, that's great. Please report it. But if all you have to show us is the output of a static analyzer, your reports will be ignored.

Reply

e [Finding 3] Although static analyzers may generate false positives, they often identify legitimate
issues that may be missed during manual code reviews. Also, formal verifiers, supported by

mathematical proofs, ensure higher accuracy.

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects ? 1 d 1 d SB56824 23
impact innovation

4.2 - Results - RQ2: How do developers' behaviors and practices influence the
mitigation of security vulnerabilities?

e Inthe case of OpenSSL, an invalid pointer dereference was reported, but developers did not
classify it as a vulnerability or error.

paulidale commented on Jz

Line 227 isn't dereferencing anything. st is de-referenced later, which will likely crash the caller but we don't consider this to be

a vulnerability -- lots of the OpenSSL APIs crash if passed a null pointer.

I think I'm missing something here.

e This perspective reveals a problematic practice: developers frequently assume that certain
conditions will never occur, dismissing potential vulnerabilities.

e [Finding 4] Dismissing potential issues identified by static analysis or formal verification tools,
without thorough investigation, exposes software to significant security risks.

® o
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects //S 1 d 1 d 5886%24 24
impact innovation @

4.2 - Results - RQ3: What is the most effective strategy for mitigating risks from
dependency vulnerabilities in open-source software projects?

e [Finding 5] Thorough verification of false positives is crucial, as dismissing them without proper
investigation can result in overlooked vulnerabilities that compromise software security.
Rigorous validation of potential false positives is essential to prevent unintended security
weaknesses from entering the codebase.

e [Finding 6] Our analysis indicates that functions from dependency libraries, especially in C
programs, where pointers are frequently used to access arrays, pose serious security risks if not

carefully verified.

e [Finding 7] Our results demonstrate that effective library management plays a more crucial role
in mitigating dependency vulnerabilities in OSS projects.

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects ? 1 d 1 d SB86824 25
impact innovation

5 - Conclusion

e Developers can significantly lower security risks by reducing unnecessary dependencies,
selecting well-vetted libraries, and continuously monitoring and managing dependencies.

e By addressing our three research questions, we have identified key best practices that developers
and the OSS community can adopt to strengthen security measures significantly, as follows:

o Providing comprehensive dependency management;
o Integrating formal verification tools and static analysis;
o Fostering a security-first culture;
o Using well-established libraries;
o Enforcing regular security audits and reviews.
e [n summary, fostering a security-conscious mindset and embedding best practices into the

development process is essential for ensuring the security and longevity of OSS projects.

® [J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects ? 1 d 1 d SB56824 26
impact innovation

References

e [Tang et al. 2022] Tang, W., Xu, Z., Liu, C., Wu, J., Yang, S., Li, Y., Luo, P., and Liu, Y.(2022).
Towards understanding third-party library dependency in c/c++ ecosystem. In 37th IEEE/ACM
ASE, pages 1-12.

e [de Sousa et al. 2023] de Sousa, J. O., de Farias, B. C., da Silva, T. A., de Lima Filho, E. B.,
and Cordeiro, L. C. (2023b). Lsverifier: A bmc approach to identify security vulnerabilities in c
open-source software projects. In XXIIl SBSeg, pages 17-24. SBC.

e [de Sousa et al. 2024] de Sousa, J. O., de Farias, B. C., da Silva, T. A., Cordeiro, L. C., et al.
(2024). Finding software vulnerabilities in open-source c projects via bounded model
checking. STTT. arXiv preprint arXiv:2311.05281.

e [Gadelha et al. 2021] Gadelha, M. R., Menezes, R. S., and Cordeiro, L. C. (2021). Esbmc 6.1:
automated test case generation using bounded model checking. STTT, 23(6): 857—-861.

e [Menezes et al. 2024] Menezes, R. S., Aldughaim, M., Farias, B., Li, X., Manino, E., Shmarov,
F., Song, K., Braule, F., Gadelha, M. R., Tihanyi, N., et al. (2024). Es-bmc v7. 4: Harnessing
the power of intervals: (competition contribution). In TACAS, pages 376—380. Springer.

[[J
MSc. Janislley Oliveira Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects //S 1 d 1 a 5856%24 27
impact innovation C

i XXIV Brazilian Symposium on Information
- : /‘?“‘\\ and Computational Systems Security

2 Séao José dos Campos/SP - 2024
SBSeg 4

Trust, but Verify: Evaluating Developer Behavior in Mitigating
Security Vulnerabilities in Open-Source Software Projects

Obrigado! Thank You!

Email: janislley.sousa@sidia.com

o @
MANCHESTER S'ld'la SAMSUNG

//impact innovation

